Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 1347.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Allen, S.R." name="eprints.creators_name" />
  14. <meta content="Freundt, A." name="eprints.creators_name" />
  15. <meta content="Sharon.Allen@utas.edu.au" name="eprints.creators_id" />
  16. <meta name="eprints.creators_id" />
  17. <meta content="article" name="eprints.type" />
  18. <meta content="2007-09-04" name="eprints.datestamp" />
  19. <meta content="2008-01-30T04:44:22Z" name="eprints.lastmod" />
  20. <meta content="show" name="eprints.metadata_visibility" />
  21. <meta content="Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments" name="eprints.title" />
  22. <meta content="pub" name="eprints.ispublished" />
  23. <meta content="260100" name="eprints.subjects" />
  24. <meta content="restricted" name="eprints.full_text_status" />
  25. <meta content="Experiments, ignimbrite, pumice, resedimentation, submarine
  26. volcaniclastic apron, wave base" name="eprints.keywords" />
  27. <meta content="The definitive version is available at www.blackwell-synergy.com" name="eprints.note" />
  28. <meta content="Deposits and transport processes resulting from the resedimentation of cold, unconsolidated ignimbrite into water were simulated by flume experiments.
  29. The ignimbrite sample used was poorly sorted (sigma=2.4-3), fine ash-rich (< 63 microns, 17-30 wt%) and included both dense lithic clasts (> 2000 kg m-3)and pumice (500 to ca 1300 kg m-3). As a result of the binding forces of the ash
  30. matrix, the experiments involved resedimentation from a steep front onto the floor (with or without an initial ramp) of the water-filled tank under both still
  31. and wave-generated conditions. Larger discrete collapse events were induced by oversteepening the sample front and by undercutting from wave action. The mass of the collapse and proportion of pore-space water strongly influenced the style of resedimentation and the deposits. Initial collapse events were from the top of the steep front and fell onto the floor. The largest, densest clasts were deposited as a lithic lag in a proximal sediment wedge or rolled down to a break-in-slope. Fine ash was transported in dilute turbidity currents, and coarse unsaturated pumice clasts floated off. Moderate collapse events
  32. generated high-density turbidity currents, trapping pumice in the flow, causing them to saturate. These low-density pumice clasts were easily remobilized by wave activity and passing currents and accumulated on the gentle slope at the bottom of the resedimented deposit. Large collapse events slumped, producing poorly sorted mounds similar in texture to the original starting material. As the matrix of the ignimbrite sample became saturated with water, moderate and large collapse events generated debrisflows and slurries that deposited massive, poorly sorted deposits. Furthermore, once more gentle slopes were established between the sample and deposit, small cascading
  33. grainflows deposited lithic clasts on the upper slopes and levees of pumice at the terminus of low-relief, ash channels. The experiments show that, excluding large collapse events and debrisflows, resedimenting ignimbrite in water is effective at segregating low-density pumice clasts from dense lithic clasts and fine ash. Experiments using fine-ash poor ignimbrite and well-sorted quartz sand for comparison formed an inherently unstable initial steep front that immediately collapsed by continuous grain avalanches. The grainflow deposits had textures similar to the fines-poor starting material." name="eprints.abstract" />
  34. <meta content="2006-08" name="eprints.date" />
  35. <meta content="published" name="eprints.date_type" />
  36. <meta content="Sedimentology" name="eprints.publication" />
  37. <meta content="53" name="eprints.volume" />
  38. <meta content="4" name="eprints.number" />
  39. <meta content="717-734" name="eprints.pagerange" />
  40. <meta content="10.1111/j.1365-3091.2006.00790.x" name="eprints.id_number" />
  41. <meta content="UNSPECIFIED" name="eprints.thesis_type" />
  42. <meta content="TRUE" name="eprints.refereed" />
  43. <meta content="http://dx.doi.org/10.1111/j.1365-3091.2006.00790.x" name="eprints.official_url" />
  44. <meta content="Allen, J.R.L. (1982) Sedimentary Structures. Their Character and Physical Basis, Vol. II. Elsevier, Amsterdam, 663 pp.
  45. Allen, S.R. (2001) Reconstruction of a major caldera-forming eruption from pyroclastic deposits characteristics: Kos Plateau Tuff, eastern Aegean Sea. J. Volcanol. Geoth. Res., 105, 141-162.
  46. Allen, S.R. (2004) The Parnell Grit beds revisited: are they all the products of sector collapse of western subaerial volcanoes of the Northland Volcanic Arc? NZ J. Geol. Geophys., 47, 509-524.
  47. Bagnold, R.A. (1954) Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond., 225, 49-63.
  48. Ballance, P.F. and Gregory, M.R. (1991) Parnell Grits-large subaqueous volcaniclastic gravity flows with multiple particle- support mechanisms. SEPM Spec. Publ., 45, 189-200.
  49. Bouma, A.H. (1962) The Sedimentology of Some Flysch
  50. Deposits. Elsevier, Amsterdam. Carey, S., Morelli, D., Sigurdsson, H. and Bronto, S. (2001) Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. Geology, 29, 347-350.
  51. Cas, R.A.F. and Wright, J.V. (1991) Subaqueous pyroclastic
  52. flows and ignimbrites: an assessment. Bull. Volcanol., 53,
  53. 357-380.
  54. Choux, C.M. and Druitt, T.H. (2002) Analogue study of particle segregation in pyroclastic density currents, with implications for the emplacement mechanisms of large ignimbrites. Sedimentology, 49, 907-928.
  55. Druitt, T.H. (1995) Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcanol. Geoth. Res., 65, 27-39.
  56. Fisher, R.V. (1965) Settling velocity of glass shards. Deep-Sea Res., 12, 345-353.
  57. Fisher, R.V. (1983) Flow transformations in sediment gravity flows. Geology, 11, 273-274.
  58. Freundt, A. (2003) Entrance of hot pyroclastic flows into the sea: experimental observations. Bull. Volcanol., 65, 144-164.
  59. Freundt, A. and Schmincke, H.-U. (1986) Emplacement of
  60. small-volume pyroclastic flows at Laacher See (East-Eifel,
  61. Germany). Bull. Volcanol., 48, 39-59.
  62. Hampton, M.A. (1972) the role of subaqueous debris flow in
  63. generating turbidity currents. J. Sed. Petrol., 42, 775-793.
  64. Hart, K., Carey, S., Sigurdsson, H. Sparks, R.S.J. and
  65. Robertson, R.E.A. (2004) Discharge of pyroclastic flows into the sea during the 1996-1998 eruptions of the Soufriere Hills volcano, Montserrat. Bull. Volcanol., 66, 599-614.
  66. Hayward, B.W. (1979) Eruptive history of the early to mid
  67. Miocene Waitakere Volcanic Arc, and Palaeogeography of
  68. the Waitemata Basin, northern New Zealand. J. R. Soc. NZ,
  69. 9, 297-320.
  70. Houghton, B.F. and Landis, C.A. (1989) Sedimentation and
  71. volcanism in a Permian arc-related basin, southern New
  72. Zealand. Bull. Volcanol., 51, 433-450.
  73. Kurokawa, K. and Tomita, Y. (1998) The Znp-Ohta ash; an
  74. early Pliocene widespread subaqueous tephra deposit in
  75. central Japan. J. Geol. Soc. Jpn, 104, 558-561.
  76. Lowe, D.R. (1976) Grain flow and grain flow deposits. J. Sed. Petrol., 46, 188-199.
  77. Lowe, D.R. (1979) Sediment gravity flows: their classification and some problems of application to natural flows and deposts. In: Geology of Continental Slopes (Eds L.J. Doyle and O.H. Jr Pilkey), SEPM Spec. Publ., 27, 75-82.
  78. Mandeville, C.W., Carey, S. and Sigurdsson, H. (1996) Sedimentology of the Krakatau 1883 submarine pyroclastic
  79. deposits. Bull. Volcanol., 57, 512-529.
  80. Manville, V., White, J.D.L., Houghton, B.F. and Wilson, C.J.N.(1998) The saturation behaviour of pumice and some sedimentological implications. Sed. Geol., 119, 5-16.
  81. Manville, V., Segschneider, B. and White, J.D.L. (2002)
  82. Hydrodynamic behaviour of Taupo 1800a pumice: implications
  83. for the sedimentology of remobilized pyroclasts.
  84. Sedimentology, 49, 955-976.
  85. Mastbergen, D.R. and Van den Berg, J.H. (2003) Breaching in
  86. fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50, 625-637.
  87. McLeod, P., Carey, S. and Sparks, R.S.J. (1999) Behaviour of particle-laden flows into the ocean: experimental simulation and geological implications. Sedimentology, 46, 523-536.
  88. Middleton, G.V. (1970) Experimental studies related to problems of flysch sedimentation. Spec. Pap. Geol. Ass. Can. 7, 253-272.
  89. Mulder, T. and Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits.
  90. Sedimentology, 48, 269-299.
  91. Nemec, W. (1990) Aspects ofsediment movement on steep
  92. delta slopes. In: Coarse Grained Deltas (Eds A. Collela
  93. and D.B. Prior), Int. Assoc. Sedimentol. Spec. Publ., 10,
  94. 29-73.
  95. Normark, W.R. and Piper, D.J.W. (1991) Depositionoal consequences of turbidity currents reflecting initiation processes and flow evolution. SEPM Spec. Pap., 46, 207-230.
  96. Piper, D.J.W., Hiscott, R.N. and Normark, W.R. (1999) Outcrop- scale acoustic facies analysis and latest Quarternary development of Hueneme and Dume submarine fans, offshore California. Sedimentology, 46, 47-78.
  97. Riggs, N.R., Ort, M.H., White, J.D.L., Wilson, C.J.N., Houghton, B.F. and Clarkson, R. (2001) Post-1.8-ka marginal
  98. sedimentation in Lake Taupo, New Zealand: effects of wave
  99. energy and sediment supply in a rapidly rising lake. In:
  100. Volcanogenic Sedimentation in Lacustrine Settings (Eds
  101. J.D.L. White and N.R. Riggs), Int. Assoc. Sedimentol. Spec.
  102. Publ., 30, 151-177.
  103. Roche, O., Druitt, T.H. and Cas, R.A.F. (2001) Experimental
  104. aqueous fluidization of ignimbrite. J. Volcanol. Geotherm.
  105. Res., 112, 267-280.
  106. Sallenger, A.H., Jr (1979) Inverse grading and hydraulic
  107. equivalence in grain-flow deposits. J. Sed. Petrol., 49, 553-562.
  108. Schumacher R. and Schmincke, H.-U. (1991) Internal structure and occurrrence of accretionary lapilli-a case study at Laacher See Volcano. Bull. Volcanol., 53, 612-634.
  109. Shanmugam, G., Lehtonen, L.R., Straume, T., Syvertsen,
  110. S.E., Hodgkinson, R.J. and Skibeli, M. (1994) Slump and
  111. debris-flow dominated upper slope facies in the Cretaceous
  112. of the Norwegian and northern North Seas (61-67N):
  113. implications for sand distribution. AAPG Bull., 78, 910-937.
  114. Sigurdsson, H., Sparks, R.S.J., Carey, S.N. and Huang, T.D.
  115. (1980) Volcanogenic sedimentation in the Lesser Antilles
  116. Arc. J. Geol., 88, 523-540.
  117. Simpson, J.E. (1987) Gravity Currents in the Environment and the Laboratory, pp. 1-244. Wiley, New York.
  118. Sparks, R.S.J., Self, S. and Walker, G.P.L. (1973) Products of ignimbrite eruptions. Geology, 1, 115-118.
  119. Whitham, A.G. and Sparks, R.S.J. (1986) Pumice. Bull. Volcanol.,48, 209-223.
  120. Wilson, C.J.N. (1985) The Taupo eruption, New Zealand. II.
  121. The Taupo Ignimbrite. Phil. Trans. R. Soc. Lond., A314,
  122. 229-310.
  123. Wright, J.V. and Mutti, E. (1981) The Dali Ash, Island of
  124. Rhodes, Greece: a problem in interpreting submarine
  125. volcanigenic sediments. Bull. Volcanol., 44, 153-167." name="eprints.referencetext" />
  126. <meta content="Allen, S.R. and Freundt, A. (2006) Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments. Sedimentology, 53 (4). pp. 717-734." name="eprints.citation" />
  127. <meta content="http://eprints.utas.edu.au/1347/2/AllenFreundt-sed_790.pdf" name="eprints.document_url" />
  128. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  129. <meta content="Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments" name="DC.title" />
  130. <meta content="Allen, S.R." name="DC.creator" />
  131. <meta content="Freundt, A." name="DC.creator" />
  132. <meta content="260100 Geology" name="DC.subject" />
  133. <meta content="Deposits and transport processes resulting from the resedimentation of cold, unconsolidated ignimbrite into water were simulated by flume experiments.
  134. The ignimbrite sample used was poorly sorted (sigma=2.4-3), fine ash-rich (< 63 microns, 17-30 wt%) and included both dense lithic clasts (> 2000 kg m-3)and pumice (500 to ca 1300 kg m-3). As a result of the binding forces of the ash
  135. matrix, the experiments involved resedimentation from a steep front onto the floor (with or without an initial ramp) of the water-filled tank under both still
  136. and wave-generated conditions. Larger discrete collapse events were induced by oversteepening the sample front and by undercutting from wave action. The mass of the collapse and proportion of pore-space water strongly influenced the style of resedimentation and the deposits. Initial collapse events were from the top of the steep front and fell onto the floor. The largest, densest clasts were deposited as a lithic lag in a proximal sediment wedge or rolled down to a break-in-slope. Fine ash was transported in dilute turbidity currents, and coarse unsaturated pumice clasts floated off. Moderate collapse events
  137. generated high-density turbidity currents, trapping pumice in the flow, causing them to saturate. These low-density pumice clasts were easily remobilized by wave activity and passing currents and accumulated on the gentle slope at the bottom of the resedimented deposit. Large collapse events slumped, producing poorly sorted mounds similar in texture to the original starting material. As the matrix of the ignimbrite sample became saturated with water, moderate and large collapse events generated debrisflows and slurries that deposited massive, poorly sorted deposits. Furthermore, once more gentle slopes were established between the sample and deposit, small cascading
  138. grainflows deposited lithic clasts on the upper slopes and levees of pumice at the terminus of low-relief, ash channels. The experiments show that, excluding large collapse events and debrisflows, resedimenting ignimbrite in water is effective at segregating low-density pumice clasts from dense lithic clasts and fine ash. Experiments using fine-ash poor ignimbrite and well-sorted quartz sand for comparison formed an inherently unstable initial steep front that immediately collapsed by continuous grain avalanches. The grainflow deposits had textures similar to the fines-poor starting material." name="DC.description" />
  139. <meta content="2006-08" name="DC.date" />
  140. <meta content="Article" name="DC.type" />
  141. <meta content="PeerReviewed" name="DC.type" />
  142. <meta content="application/pdf" name="DC.format" />
  143. <meta content="http://eprints.utas.edu.au/1347/2/AllenFreundt-sed_790.pdf" name="DC.identifier" />
  144. <meta content="http://dx.doi.org/10.1111/j.1365-3091.2006.00790.x" name="DC.relation" />
  145. <meta content="Allen, S.R. and Freundt, A. (2006) Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments. Sedimentology, 53 (4). pp. 717-734." name="DC.identifier" />
  146. <meta content="http://eprints.utas.edu.au/1347/" name="DC.relation" />
  147. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/BibTeX/epprod-eprint-1347.bib" title="BibTeX" type="text/plain" />
  148. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/ContextObject/epprod-eprint-1347.xml" title="OpenURL ContextObject" type="text/xml" />
  149. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/ContextObject::Dissertation/epprod-eprint-1347.xml" title="OpenURL Dissertation" type="text/xml" />
  150. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/ContextObject::Journal/epprod-eprint-1347.xml" title="OpenURL Journal" type="text/xml" />
  151. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/DC/epprod-eprint-1347.txt" title="Dublin Core" type="text/plain" />
  152. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/DIDL/epprod-eprint-1347.xml" title="DIDL" type="text/xml" />
  153. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/EndNote/epprod-eprint-1347.enw" title="EndNote" type="text/plain" />
  154. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/HTML/epprod-eprint-1347.html" title="HTML Citation" type="text/html; charset=utf-8" />
  155. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/METS/epprod-eprint-1347.xml" title="METS" type="text/xml" />
  156. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/MODS/epprod-eprint-1347.xml" title="MODS" type="text/xml" />
  157. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/RIS/epprod-eprint-1347.ris" title="Reference Manager" type="text/plain" />
  158. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/Refer/epprod-eprint-1347.refer" title="Refer" type="text/plain" />
  159. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/Simple/epprod-eprint-1347text" title="Simple Metadata" type="text/plain" />
  160. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/Text/epprod-eprint-1347.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  161. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1347/XML/epprod-eprint-1347.xml" title="EP3 XML" type="text/xml" />
  162.  
  163. </head>
  164. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  165. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  166.  
  167.  
  168.  
  169.  
  170. <table width="795" border="0" cellspacing="0" cellpadding="0">
  171. <tr>
  172. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  173. <table border="0" cellpadding="0" cellspacing="0" width="795">
  174. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  175. <tr>
  176. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  177. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  178. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  179. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  180. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  181. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  182. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  183. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  184. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  185. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  186. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  187. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  188. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  189. </tr>
  190. <tr>
  191. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  192. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  193. </tr>
  194. <tr>
  195. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  196. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  197. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  198. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  199. </tr>
  200. <tr>
  201. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  202. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  203. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  204. </tr>
  205. <tr>
  206. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  207. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  208. </tr>
  209. <tr>
  210. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  211. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  212. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  213. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  214. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  215. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  216. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  217. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  218. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  219. </tr>
  220. <tr>
  221. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  222. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  223. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  224. </tr>
  225. <tr>
  226. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  227. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  228. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  229. </tr>
  230. </table></td>
  231. </tr>
  232. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  233. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  234. <td align="right" style="white-space: nowrap">
  235. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  236. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  237. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  238. <input type="hidden" name="_order" value="bytitle" />
  239. <input type="hidden" name="basic_srchtype" value="ALL" />
  240. <input type="hidden" name="_satisfyall" value="ALL" />
  241. </form>
  242. </td>
  243. </tr></table></td></tr>
  244. <tr>
  245. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  246.  
  247.  
  248. <div align="center">
  249. <table width="720" class="ep_tm_main"><tr><td align="left">
  250. <h1 class="ep_tm_pagetitle">Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments</h1>
  251. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Allen, S.R.</span> and <span class="person_name">Freundt, A.</span> (2006) <xhtml:em>Resedimentation of cold pumiceous ignimbrite into water: facies transformations simulated in flume experiments.</xhtml:em> Sedimentology, 53 (4). pp. 717-734.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1347/2/AllenFreundt-sed_790.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1347/2/AllenFreundt-sed_790.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1247Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="1749" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1111/j.1365-3091.2006.00790.x">http://dx.doi.org/10.1111/j.1365-3091.2006.00790.x</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Deposits and transport processes resulting from the resedimentation of cold, unconsolidated ignimbrite into water were simulated by flume experiments.&#13;
  252. The ignimbrite sample used was poorly sorted (sigma=2.4-3), fine ash-rich (&lt; 63 microns, 17-30 wt%) and included both dense lithic clasts (&gt; 2000 kg m-3)and pumice (500 to ca 1300 kg m-3). As a result of the binding forces of the ash&#13;
  253. matrix, the experiments involved resedimentation from a steep front onto the floor (with or without an initial ramp) of the water-filled tank under both still&#13;
  254. and wave-generated conditions. Larger discrete collapse events were induced by oversteepening the sample front and by undercutting from wave action. The mass of the collapse and proportion of pore-space water strongly influenced the style of resedimentation and the deposits. Initial collapse events were from the top of the steep front and fell onto the floor. The largest, densest clasts were deposited as a lithic lag in a proximal sediment wedge or rolled down to a break-in-slope. Fine ash was transported in dilute turbidity currents, and coarse unsaturated pumice clasts floated off. Moderate collapse events&#13;
  255. generated high-density turbidity currents, trapping pumice in the flow, causing them to saturate. These low-density pumice clasts were easily remobilized by wave activity and passing currents and accumulated on the gentle slope at the bottom of the resedimented deposit. Large collapse events slumped, producing poorly sorted mounds similar in texture to the original starting material. As the matrix of the ignimbrite sample became saturated with water, moderate and large collapse events generated debrisflows and slurries that deposited massive, poorly sorted deposits. Furthermore, once more gentle slopes were established between the sample and deposit, small cascading&#13;
  256. grainflows deposited lithic clasts on the upper slopes and levees of pumice at the terminus of low-relief, ash channels. The experiments show that, excluding large collapse events and debrisflows, resedimenting ignimbrite in water is effective at segregating low-density pumice clasts from dense lithic clasts and fine ash. Experiments using fine-ash poor ignimbrite and well-sorted quartz sand for comparison formed an inherently unstable initial steep front that immediately collapsed by continuous grain avalanches. The grainflow deposits had textures similar to the fines-poor starting material.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available at www.blackwell-synergy.com</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Experiments, ignimbrite, pumice, resedimentation, submarine&#13;
  257. volcaniclastic apron, wave base</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1347</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Sep 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">30 Jan 2008 15:44</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1347;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=1347">item control page</a></p>
  258. </td></tr></table>
  259. </div>
  260.  
  261.  
  262.  
  263. <!-- InstanceEndEditable --></td>
  264. </tr>
  265. <tr>
  266. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  267. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  268. <tr valign="top">
  269. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  270. </tr>
  271. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  272. <tr valign="top">
  273. <td width="68%" class="footer">Authorised by the University Librarian<br />
  274. © University of Tasmania ABN 30 764 374 782<br />
  275. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  276. <td width="32%"><div align="right">
  277. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  278. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  279. </a></p>
  280. </div></td>
  281. </tr>
  282. <tr valign="top">
  283. <td><p>  </p></td>
  284. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  285. </tr>
  286. </table>
  287. <!-- #EndLibraryItem -->
  288. <div align="center"></div></td>
  289. </tr>
  290. </table>
  291.  
  292. </body>
  293. </html>